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Abstract—Damage characterization through wave 
propagation and scattering is of considerable interest to 
many non-destructive evaluation techniques.  For fiber-
reinforced composites, complex waves can be generated 
during the tests due to the non-homogeneous and 
anisotropic nature of the material when compared to 
isotropic materials.  Additional complexities are introduced 
due to the presence of the damage and thus results in 
difficulty to characterize these defects. The inability to 
detect damage in composite structures limits their use in 
practice. A major task of structural health monitoring is to 
identify and characterize the existing defects or defect 
evolution through the interactions between structural 
features and multidisciplinary physical phenomena. In a 
wave-based approach to addressing this problem, the 
presence of damage is characterized by the changes in the 
signature of the resultant wave that propagates through the 
structure. In order to measure and characterize the wave 
propagation, we use the response of the surface-mounted 
piezoelectric transducers as input to an advanced machine-
learning based classifier known as a Support Vector 
Machine.  
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1. INTRODUCTION 

We discuss an automated method of classifying sensor 
signals collected from different types of damage coupons to 
enable the detection and diagnosis of damage on composite 
structures using Support Vector Machines (SVMs), which 
are an advanced classification method from the field of 
machine learning.  We use a special type of support vector 
machine known as the one-class SVMs as a pattern 
recognition tool for automatic anomaly detection and 
diagnosis on structures made from Carbon Fiber Reinforced 
Composite (CFRC) materials.  

A key-step in the analysis of structural waveforms with the 
one-class SVM is transformation of the sensor signals into a 
joint time-frequency domain followed by statistical 
processing. Since the SVM results depend on the type of 
preprocessing method and the knowledge of kernel 
parameters, we evaluated the sensitivity of the classifier for 
different time-frequency based representations under the 
optimal setting of the kernel parameters. Our initial 
experiments indicate that one-class SVMs are capable of 
detecting and diagnosing certain structural failures on 
composite materials.  

We also study the use of one-class SVMs to understand 
issues related to localized degradation of materials. 
Applying one-class SVMs to a lagged and windowed time-
series representation of the wave propagation can help 
identify gradual degradation or subcomponent level changes 
in the structure. The proposed method is sensitive to certain 
changes in the vibration attributes and thus can be used as 
an indicator to ascertain the current status of the structure 
compared to its previous state.  A second set of experiments 
have been conducted on bolted structure and the looseness 
of the bolted joint has been considered as a faulty situation. 
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 The initial set of analysis indicates that the proposed 
technique can identify the gradual looseness of the bolt 
when subjected to different preload conditions. 

The development of smart structures technology has 
coincided with the increased use of composite materials in 
structural design.  Composite structures are becoming 
increasingly popular in both aerospace and other systems 
due to the benefit of reduced weight for given strength and 
stiffness requirements. However composite laminates have 
specific forms of damage that are not found in other 
materials, such as delamination, transverse matrix cracking, 
fiber fracture, and matrix cracking.  Either one or 
combinations of these forms of damage may nucleate when 
the composite is subjected to fatigue, over-loading, low-
velocity impact or under various test cases of drilled holes, 
notches, saw-cut and laminate stacking sequence mismatch. 
 These forms of damage not only affect the way in which it 
responds to applied loads but also may lead to catastrophic 
failure of the structure under certain environmental 
condition.  There are numerous reasons why it is desirable 
to ascertain the condition of a structure to determine if 
failure is imminent. For example, failure of a structure may 
result in loss of use which usually implies loss of revenue. 
In addition, repair costs resulting from the failure of a 
structure usually far exceed the cost of preventive 
maintenance repair. Moreover, failure of certain structures 
may result in collateral costs that could conceivably exceed 
the cost of the structure itself. Although failure of a 
structure may seem sudden to the uninformed observer, 
there frequently are numerous physical phenomena which 
precede catastrophic failure [3]. In order to perform 
preventive repairs it is necessary to not only look for these 
signatures, but to detect and interpret them. The exact 
location of the distress can be determined by employing 
multiple sensors. Fiber reinforced composite materials, in 
particular are very compatible to such diagnostic testing 
systems. Several techniques are being developed to detect, 
estimate and localize damage within a composite structure. 
A comprehensive literature review of damage detection and 
health monitoring methods for structural and mechanical 
systems was provided by Doebling, et al [30] and Chang 
[13, 14]. However, further research is necessary to obtain 
damage classification solutions to promote the use of 
composite materials in complex systems and the 
development of robust condition monitoring in hostile 
environments.   

The overall objective of this research is to develop a robust 
technique for damage classification mainly in composite 
structures. The normal (zero-state) and abnormal attributes 
are extracted from the measured data of a structure and are 
further analyzed to characterize various states of the system. 
Once the diagnostic procedure is trained, subsequent test 
data can be examined to see if the features deviated from the 
normal behavior have significant similarity with certain 
abnormal attributes of the system. The use of SVMs to 
investigate the vibration signatures of damages in 

composites has been demonstrated under various test 
applications.  

Due to the time-varying nature of these signals, the time-
frequency based method along with the Support Vector 
Machines algorithm has been used for their automatic 
classification purpose. The goal is to extract and classify the 
signature characteristics due to the presence of various types 
of defects in composite structures so that the status of the 
structure can be ascertained. The final effort is to evaluate 
the performance of the proposed classifier to investigate 
specific test cases like bolted joint in plate structure under 
different loading conditions.  

When localized damage is induced in the structure, these 
distinct feature components are sensed by the neighboring 
transducers [4]. Extracting the featured components with 
suitable signal processing techniques is a major task in 
structural health monitoring (SHM). In the present research, 
characterization of sensor signals has been conducted to 
obtain the influence of defects on the structural response 
using the support vector machines (SVMs) technique.   

The rest of the paper is organized in four sections. Section 2 
provides a brief literature survey on the existing statistical 
classifiers. Section 3 recalls a brief description on the 
mathematical formulation of SVMs with some discussions 
on the high dimensional feature space. Section 4 describes 
some strategies on the choice of the parameters of the 
selected model and their influence on the SVMs classifier. 
Section 5 deals with the experimental details of the present 
research. Section 6 provides with some details on the 
preprocessing of the datasets. Section 7 presents the 
outcome of the classifier and gives some insight on the 
obtained results. Finally Section 8 summarizes the 
observations with some concluding remarks.  

2. EXISTING STATISTICAL CLASSIFIERS 

Several approaches exist for the identification of waveforms 
based on machine-learning techniques [5, 9, 22, 26, 28].  
References [5] and [26] present examples of algorithms to 
analyze discrete and continuous data streams for outliers 
and possible anomalies.  References [22, 28] describe 
methods that work on both discrete and continuous data 
streams, and [9] gives a method well-suited to analyzing 
continuous data streams.  These systems either rely on 
having examples of failure signatures or rely on 
unsupervised learning techniques to characterize nominal 
behavior so that off-nominal behavior can be identified. A 
brief summary of the application of different pattern 
recognition techniques for structural health monitoring and 
damage detection is well documented in Los Alamos 
National Laboratory Report [1]. 
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Figure 2: Geometric interpretation of optimal 
hyperplane construction for two-dimensional case. 

In the first situation, we assume that we are given vibration 
signals that have already been classified by a human expert 
into m of n categories.  These categories correspond to a 
failure mode.  Then, we build a model such as a neural 
network, support vector machine, or a decision tree, that 
learns the relationship between the input vibration signals 
and the failure categories.  This learning amounts to the 
estimation of a set of parameters of the model to maximize 
the classification accuracy.  Once such a model is learned, 
when new vibration data is submitted to the model, it can 
predict (or classify) that vibration signal into the appropriate 
categories.  Of course, due to the variation in the signal and 
other sources, the model performance may not be perfect.  
Nonetheless, this methodology works well for a variety of 
problems. 

In many situations, however, we are not able to generate 
examples of all possible anomalies.  In this case, we take a 
so-called unsupervised learning approach, where we learn 
the nominal behavior of the system only.  When new data 
comes in, we compare it to what has been observed before.  
If it is sufficiently similar to previous observations, the 
system is characterized as operating in a nominal regime.  
Otherwise, it is said to be in an off-nominal situation. 

3. ONE-CLASS SVMS BASED CLASSIFIER 

The Support Vector Machine (SVM) provides non-linear 
approximations by mapping the input vectors into high 
dimensional feature spaces where a separating hyperplane is 
constructed. The idea behind this method is to map the n- 
dimensional vectors x of the input space X into a high- 

dimensional (possibly infinite dimensional) feature space 
(figure.1).  In this research, the input data is mapped into an 
infinite-dimensional feature space using a Radial Basis 
Function (RBF) kernel (equation 1).  The dot product in the 
feature map (φ ) is implicitly computed by evaluating the 
simple kernel (K), thus avoiding the explicit calculation of 
the feature map. 
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One class SVM belongs to a unique group of the SVM 
family where the training input vectors belong to one-class, 
i.e., the class representative of normal or nominal system 
behavior.  The objective is to map the data into the feature 
space corresponding to the kernel and thereafter 
constructing the optimal hyperplane to separate the featured 
vectors from the origin with maximum margin. This process 
characterizes the nominal operation of the system in the 
feature space.  All nominal points lie ‘above’ the optimal 
hyperplane, and it is assumed that all future nominal 
behavior will lie in the same region.  The algorithm returns 
a decision function f(x) that evaluates for every new data 
point (x) to determine which side of the hyperplane it falls 
on in feature space. Figure 2 represents the schematic 
overview of the one-class SVM and its parameters. The 
maximum separation between the origin and the data point 
is obtained by solving the quadratic problem (equation 2).  
When this algorithm is applied to new data, the decision 
function is used to determine whether or not the data points 
lie above or below the hyperplane. Points that fall above the 
plane (away from the origin) are called, nominal, and other 
points are called anomalous. 

 

 

Figure 1: Illustration of higher dimensional 
mapping for liner separation.  
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• Initialize model parameters: ν ,σ (range),     
training data points (x) 
• For eachσ , σ = minσ ,…, maxσ  

- Solve dual problem to compute iα and ρ  
- Returns a decision  f(x) on training points (x) 
- Plots classification curve 
- Compute optimal σ  value 

• Update kernel parameter σ  
• Solve dual problem to compute iα and ρ   
• Evaluate decision function  f(y) on test points (y) 
•  Output: Correct Classification rate and Outliers 
with scores  
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where ν  represents the upper bound on the fraction of the 
training error, ξ  is the non-zero slack variable and ρ  
being the offset (figure 2). The target function in the dual 
problem can be written as, 
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where iα  represents the Lagrange’s multiplier. The 

parameter ρ can be recovered for values of iα that satisfies 
the given constraints in equation (2) and the values of 

)( ixφ  for the corresponding iα  are termed as support 

vectors. The obtained iα  and )( ixφ must satisfy the 
equation for the offset, expressed as, 

∑=
j
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The decision function for a given test vector )(yφ can be 
expressed in terms of the kernel as, 
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For the training data, the decision function takes the value 
of 1+  capturing most of the data points and 1−  elsewhere. 
Once the dual problem (equation 3) is solved to obtain the 
support vectors, the optimal hyperplane is constructed in the 
feature space. For a new test point, the decision function 
evaluates which side of the hyperplane the given test point 
falls into, using equation 5. The steps of the adopted 
approach are shown in table 1.  

4. CHOICE OF KERNEL PARAMETER 

In order to design the One-Class SVMs classifier, we need 
to select appropriate kernel parameter σ  for each class of 
data. The parameter σ  controls the smoothness of the 
kernel function and is tuned based on the model  

 

parameterν , such that the upper bound on the classification 
error is satisfied. There are several ways the parameter σ  is 
tuned to adjust the kernel to obtain best possible results. In 
this research, the optimal value of the sigma selection is 
based on the approach proposed by Runar Unnthorsson 
[25]. In this approach, for a pre-assigned value of ν , the 
One-Class SVMs model is trained with a given set of data 
and the classification rate is plotted across a range of σ . 
This implies that the best possible classification accuracy 
that can be achieved is ( )ν−1 . The criteria for selecting the 
optimal σ  is where the fraction of the correct classification 

rate of the training data first touches the highest 
classification accuracy i.e. ( )ν−1 %, as demonstrated by 
the straight line in figure 3 where the x-axis and y-axis 
represents the σ variation and correct classification rate (in 
percentage) respectively. The choice of the model parameter 
ν  is typically based on the assumption to set the highest 
allowable fraction of misclassification of the training data. 

Figure 3: Demonstration of optimal σ selection 
X-axis: Variation of σ  
Y-axis: Classification rate (in percentage) 

Table 1: One-Class SVMs Algorithm
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In this work the value of ν  is set to 0.05,implying that there 
would be 5% classification error on the training data as 
shown in figure 3.  

 

 

5. EXPERIMENTAL BACKGROUND  

For damage quantification, experiments were conducted to 
obtain the response of a 16 ply 0/90 Graphite/Epoxy 
composite plate with surface bonded actuators subjected to 
forced excitation as shown in figure 4. The investigated 

damages (4 categories) are notches, saw-cut, drilled holes 
and delamination of 4.5cmx5cm introduced at the 4th 
interfaces from the midplane. The fifth set of data belongs 
to the healthy group which is used as a reference data for 
comparison. In the first set of experiments, a 4.5 cycle tone 
burst signal with a central frequency of 8 KHz, was used as 
the excitation signal, and sampled at 100 KHz. To take into 
account the material variability, sensor signals were 
collected from 4 identical coupons of each group, for 
example 4 sets of measurements conducted on healthy 
specimen. A minimum of 10 observations were fetched 
from each transducer across each test bed under the same 
operating condition to take into account the experimental 
uncertainties associated with data acquisition. For 
classification data, the dataset consists of 40 vectors from 
each sensor for each category of defects. The objective is to 
classify the sensor signals collected from different test beds 
to assist in the diagnosis of composite structures be based 
on the information from the neighboring sensors (sensor-1 
and sensor-2 as shown in figure 4). In the following section 
the ability of the One-Class SVM based technique to detect 
the presence of outliers and classify different attributes of 
the defects will be demonstrated using the experimental 
datasets. 

6. PREPROCESSING 

For time-varying signals (i.e. signals whose frequency 
varies with time), the Fourier transform will not provide this 
time-varying frequency information. Moreover, in real 
applications, the presence of relatively high background 
vibration (low frequency noise) may not yield satisfactory 
information when only frequency domain analysis is used. 
Extensive research has been conducted and various 
techniques [2, 6, 10, 11, 17, 18, 24, 27] have been proposed 
by several others to achieve more sensitive damage 
detection techniques. The most popular methods include 
cepstrum analysis, envelope detection and high frequency 
resonance, time-domain averaging, kurtosis and crest factor 
analysis. Most of these analysis techniques yield good 

results in some applications but implementation of these 
techniques in structural health monitoring may be limited as 
they require the use of specific frequency bands and assume 
that the signal is not time-varying. Time-varying signals are 
best represented in the time-frequency domain to obtain 
time-varying frequency information. In order to analyze the 
time-varying sensor response effectively, the time and 
frequency domain characteristics must be considered 
jointly. These joint time-frequency representations (TFRs) 
[7, 19, 20] characterize a given signal over the time-
frequency (TF) plane by combining the time and frequency 
domain information to yield more revealing information 
about the temporal localization of a signal’s spectral 
components. Linear TFRs such as the wavelet transform 
[16], short-time Fourier transform and bilinear time-
frequency distributions such as the Wigner distribution and 
the spectrogram [29]  have been shown to provide the time-
dependent frequency composition of a signal over the entire 
spectrum, and are particularly useful to detect localized 
changes in a signal [12]. In the proposed scheme, the time 
domain data is first down-sampled by 4 times and thereafter 
Gabor’s spectrogram technique (with time instants of 100, 
32 frequency bins, Gaussian window) has been used to 
extract the time-varying features of the sensor data for a 
single set from each category. Figure 5 represents the 
spectrogram plots corresponding to each category of the 
damaged states. Therefore, for the first set of analysis, the 

Figure 4: Experimental setup with structural dimensions and interfaces 
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sensor observation is described by 100 time-localized 
coefficient vectors of length 32, which can be arranged into 
a one dimensional feature vector of length 3200. In order to 

 
maximize defect information and to minimize false 
classification, the mutual information of the neighboring 
sensors are taken into account where each test bed includes 
two sensors’ signals (sensor-1 and sensor-2 as demonstrated 
in figure 4) and 10 observations are fetched from each 
sensors to include the experimental uncertainties.   

As a result, a 20-dimension feature vector consisting of 
twenty 1-dimension vectors for each test bed is generated 
for each defect condition and therefore total 100 
observations corresponding to 5 defect conditions ( C  
classes) would result in 3200 X 100 dimensional matrices 
(say S). In the analysis 50% of the observations related to 
each condition are used as the training samples and rest as 
the testing samples as shown in Table 2.  

The second set of analysis is done using One-class SVMs 
along with time-embedded method which is a popular 
technique for time-series prediction [15]. In this method, a 
state vector ty can be defined for a given time observation 

( )tx  such that, 

( ) ( ) ( )( )( )ττ 1,......,, −−−= Ntxtxtxyt (6)    

where τ is the time delay and N is the embedding 
dimension.  The choice of the time-embedding method, as a 
preprocessing tool, is based on some initial research that has 
been conducted to find it’s applicability along with the One-
class SVMs to detect the presence of surprising features (for 
example reflected components, high frequency burst, 
multiple harmonic generation, envelop contamination etc.) 
in structural data.  In the present research, for each time 
domain data (of 800 sample points), a 11dimensional state 
vector is obtained using  1=τ  and 11=N . Hence a total 
of total 790 X 2200 dimensional matrices (S) corresponding 
to 5 defect conditions would be available for analysis. As 
mentioned, 50% of the observations related to each 
condition are used as the training samples and the others as 
the testing samples.  

7. RESULTS AND DISCUSSIONS 

Table 3 presents the outcomes ( R ) using SVMs on the 
damage classification, using a RBF kernel. Here ijR  

represents the correct classification rate of a dataset from 
any thj category (represents each column) when trained 

with a dataset from thi category (represents each row). As 
mentioned earlier in One-Class SVMs Algorithm (Table 1), 
for each training set and pre-assigned ν , the optimalσ is 

Defect description Class (C) Total observations  Training Class Test Class 

No defect (Reference) 1 20 TRC1 10 TEC1 10 
Delaminated (15%) 2 20 TRC2 10 TEC2 10 
Drilled holes 3 20 TRC3 10 TEC3 10 
Notch 4 20 TRC4 10 TEC4 10 
Sawcut 5 20 TRC5 10 TEC5 10 

Figure 5: Spectrogram plots of 
sensor-1 signal from 
cantilever beam with:  
(a) No defect 
(b) Delamination 
(c) Drilled hole 
(d) Notch 
(e) Sawcut 
X-axis: Sample points (time) 
Y-axis: Frequency (bins)

Table 2:  Training and test class distribution for different defects on composite materials. 
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calculated and thereafter the dataset assigned for testing is 
being evaluated to compute the correct classification rate. In 
our current analysis, the ν  is set to 0.05 and the optimal 
σ is being calculated for each training set.  Once the matrix 
( R ) is calculated, the selection criteria that two groups of 
signals belong to the same class is true when ijR  and jiR  

closely matches with higher classification rate 
i.e. jiij RR ≅ . When One-Class SVMs is trained 

with thj category dataset, most of the thj category feature 
points lie on one side of the hyperplane but majority of the 

thi category feature points (from test dataset) may or may 
not lie on the same side of the hyperplane. In case the 
category feature points don’t, then they are from different 
classes. However if they do, then it would be necessary to 
cross check if they both lie on the same side of the 
hyperplane, when the SVM is trained with category dataset 
instead. The geometrical interpretation for the selection 
criteria means that the two hyperplanes constructed 
individually by thi category and thj category dataset has to 
be very similar such that majority feature points from both 
the categories lie on the same side irrespective of the 
hyperplane constructed. In our present analysis, we set the 
selection criteria as ( )γ−≤− 105.0jiij RR , which 

means that to belong to the same class the absolute 
difference of the correct classification rate obtained from 
two sets of data must be less than  or equal to 5% of the 
maximum classification rate. Once the R matrix is 
obtained, a new matrix k

ijQ   is formed for the thk  sensor, 

such that the following criteria hold,  

If ( )γ−≤− 105.0jiij RR ,  1== k
ji

k
ij QQ  

Else     0== k
ji

k
ij QQ  

    (7) 

For each sensor-1 (s1) and sensor-2 (s2), the k
ijQ  is 

evaluated and finally compared to obtain M , where 

21 ss QQM I=   (8) 

The matrix ( M ) represents the final outcome of the 
classifier based on the mutual information of the sensor 
pairs and can infer that thi category and thj category 

dataset belong to the same group, if 1== jiij MM . 

Tables 3, 4 and 5 represents the set of analysis results (case-
1) obtained using the first set of 3200 X 100 dimensional 
matrices with the time-frequency based features of the 
sensor data. The one-to-one classification rate for sensor-1 

and sensor-2 are given in ijR matrix in table 3 and 4. Table 

5 represents the outcome ( M ) using equation (7) and (8). 
It is worthwhile to mention that since the classifier is 
specifically not exclusively characterizing the changes in 
the signature, (healthy ~ defective), it would very often 
observe a majority of common attributes in a given dataset 
and therefore imposing selection criteria and mutual 
information (equation 7 & 8) from multiple sensors would 
minimize probable false classification.  It is observed that 
the One-class Support Vector Machines algorithm correctly 
classifies class 1,2,3,5 but is unable to categorize the notch 
type defect.  

The analysis result (Case-2) for the dataset obtained from 
the time-embedding technique is shown in Tables 6, 7 and 
8. The outcome indicates that the One-class SVMs with 
time-embedded technique has better classification 
performance for all defective states compared to the time-
frequency based technique. One possible reason could be 
that the way the structural dataset is presented as a result of 
the preprocessing using time-embedded technique and thus 
enabling One-Class SVMs to separate these features in 
higher dimensional space. The final set of the classification 
analysis was conducted for a dataset collected from 2 
identical coupons of each group to take into account the 
experimental and material uncertainties associated with data 
acquisition and manufacture respectively. A minimum of 20 
vectors from each sensor for each category of defects were 
selected from a pool of 40 vectors and the selection was 
based on the two datasets having the closest distribution. In 
this effort, a total of total 790 X 4400 dimensional matrices 
(S) corresponding to 5 defect conditions has been used 
using time-embedded technique. The One-class SVMs 
classifiers successfully classified all the defect states, and 
are shown in table 9, 10 and 11(case-3). Throughout this 
research, the OSU SVM Classifier Matlab Toolbox (ver. 
3.00) has been used for analysis purpose 
[http://svm.sourceforge.net/download.shtml]. 

 A critical component in developing and implementing a 
robust diagnostics technique using guided wave is to 
acquire signals from distributed sensors and classify them. 
In the last decade, a significant amount of research has been 
conducted and major contributions have been made in the 
field of machine diagnostics and prognostics [10, 12, 17, 18, 
21, 24]. Varma et. al. has proposed a time-frequency 
decomposition based technique to classify time-varying 
acoustic signals of reinforced concrete structures [7]. In this 
paper, the authors established the use to Matching Pursuit 
Decomposition (MPD) method as a pattern recognition tool 
and finally computed the classification rule based on the net 
contribution of the correlation coefficient information for 
the decomposed components from each class. The 
performance of the proposed classifier is indeed superior for 
signals having unlike patterns in time-frequency domain but 
shows some drop in the probability of correct classification 
as the time-frequency patterns gets similar (refer [7] – page 
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4). Michaels et. al [19] conducted a comparative study on 
the performances feature-based-classifiers and demonstrated 
some applications in the SHM and NDE, using wave based 
technique.  In this paper, the author adopted a differential 
scheme (normal ~ abnormal), to compute the features in 
time, frequency or joint time-frequency domain and 
examined the similarity measurement using Fisher 
Discriminant Ratio (FDR). One of the major conclusions 
made by the author is that the classifier performance 
improves significantly with multiple input feature vectors, 
when compared to a single input. Our present work 
provides a One-Class based classification technique using 
feature vectors extracted applying the spectrogram and 
time-embedding method directly to the sensor response but 
not the difference output. It has been demonstrated that the 
developed analysis based on mutual information from 
multiple sensor is an effective way of minimizing the 
possibility of false classification, when coupled with a 
selection criterion.  

The final investigation was conducted to characterize sub-
component level degradation of systems. In our current 
effort, the effect of the presence of a bolt in the plate with 
different levels of applied torque is investigated using 
experimental datasets. Experiments are conducted on a 38 x 
38 x 0.15875cm aluminum cantilever plate with  surface 
bonded transducers is used and the response near the bolted 
joint is recorded for various applied torque values. 

These torque settings were achieved using a torque wrench 
in increments of 20 in-lb from 35 (minimum) to 80 
(maximum) in-lb and the torque range is based on the 
tolerance of the bolt. The actuator and the sensors are 
placed at a distance of 2.5cms and 10cms from the center of 
the bolt respectively, in the radial direction as shown in 
figure 6. The actuator is subjected to a 4.5 cycle tone burst 

signal with a central frequency of 8 KHz, was used as the 
excitation signal, and sampled at 100 KHz. Initially all bolts 
were kept tightened at maximum allowable torque i.e. 85 in-
lb, represented as 100 percentage or full torque. Figure 7 

demonstrates the application of One-Class SVMs to the 
time-embedded representation of the sensor-1 to identify the 
gradual changes in torque level at bolt-1 and thus defining 
the state of the structure under different loading conditions.  

8. CONCLUSIONS 

A wave based approach is used to characterize different 
defect states in composite laminates in terms of the changes 
in the signature of the resultant wave that propagates 
through the anisotropic medium. The current effort 
demonstrates the use of “One-Class SVMs” technique as a 
signal processing tool to demonstrate damage classification 
technique based on time-frequency information. 
Furthermore, it has also been demonstrated that using time-
embedded technique with “One-Class SVMs” can lead to 
better classification in the presence of material and 
experimental uncertainties. Further research will be 
conducted to address some issues to increase the robustness 
of the current model in the presence of material 
uncertainties.  Another area of future work is to use one-
class SVMs to characterize damage signatures where we 
assume that there are no labeled nominal examples.  In this 
case, we would assume that we only have a set of examples, 
some of which are nominal, and some of which are off-
nominal.  The methodology outlined in this paper may be 
useful in separating these two cases, thus enabling analysis 
of systems which don’t have labeled examples. 
 
 
 
 

Figure 6: Experimental setup for a bolted joint structure 

Figure 7: Illustration of gradual changes in torque level 
at bolt-1 
X-axis: Variation of torque level (in percentage) 
Y-axis: Classification rate  
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ijR  
ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.003  TRC1 
(train) 

0.951  0.7863  0.7196 0.7210 0.6776 0.8943 0.792  0.744  0.6671 0.6663 

0.004  TRC2 
(train) 

0.9265  0.9501  0.826  0.8283 0.766  0.9396 0.8941 0.8535  0.7826 0.7291 

0.005  TRC3 
(train) 

0.8950  0.8405  0.9528 0.8466 0.7425 0.9135 0.8671 0.8801  0.7780 0.7330 

0.007  TRC4 
(train) 

0.919  0.8746  0.8813 0.9506 0.7733 0.9255 0.9148 0.9053  0.8680 0.7661 

0.008  TRC5 
(train) 

0.9356  0.8761  0.8745 0.8435 0.9503 0.9340 0.8940 0.8556  0.7811 0.7665 

0..003 TEC1 
(train) 

0.8756  0.7951  0.7311 0.7181 0.6598 0.9536 0.8098 0.7406  0.6688 0.6785 

0.007  TEC2 
(train) 

0.9166  0.8910  0.8651 0.8738 0.7845 0.9323 0.9508 0.9026  0.8205 0.7681 

0.005  TEC3 
(train) 

0.8838  0.816  0.8380 0.8146 0.727  0.8886 0.8458 0.9121  0.7708 0.7101 

0.008  TEC4 
(train) 

0.9301  0.9033  0.8875 0.945  0.8013 0.9416 0.929  0.9113  0.9516 0.7940 

0.007  TEC5 
(train) 

0.905  0.8728  0.8531 0.8393 0.7843 0.9226 0.8963 0.8618  0.8081 0.9531 

Table 3: Classification rate ( ijR matrix) for sensor-1 (case-1) 
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Table 4: Classification rate ( ijR matrix) for sensor-2 (case-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ijR  
ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.003  TRC1 
(train) 

0.951  0.7863  0.7196 0.7210 0.6776 0.8943 0.792  0.744  0.6671 0.6663 

0.004  TRC2 
(train) 

0.9265  0.9501  0.826  0.8283 0.766  0.9396 0.8941 0.8535  0.7826 0.7291 

0.005  TRC3 
(train) 

0.8950  0.8405  0.9528 0.8466 0.7425 0.9135 0.8671 0.8801  0.7780 0.7330 

0.007  TRC4 
(train) 

0.919  0.8746  0.8813 0.9506 0.7733 0.9255 0.9148 0.9053  0.8680 0.7661 

0.008  TRC5 
(train) 

0.9356  0.8761  0.8745 0.8435 0.9503 0.9340 0.8940 0.8556  0.7811 0.7665 

0..003 TEC1 
(train) 

0.8756  0.7951  0.7311 0.7181 0.6598 0.9536 0.8098 0.7406  0.6688 0.6785 

0.007  TEC2 
(train) 

0.9166  0.8910  0.8651 0.8738 0.7845 0.9323 0.9508 0.9026  0.8205 0.7681 

0.005  TEC3 
(train) 

0.8838  0.816  0.8380 0.8146 0.727  0.8886 0.8458 0.9121  0.7708 0.7101 

0.008  TEC4 
(train) 

0.9301  0.9033  0.8875 0.945  0.8013 0.9416 0.929  0.9113  0.9516 0.7940 

0.007  TEC5 
(train) 

0.905  0.8728  0.8531 0.8393 0.7843 0.9226 0.8963 0.8618  0.8081 0.9531 
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Table 5: Outcome of the classifier (case-1)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ijM  
TRC1 
(test) 

TRC2 
(test) 

TRC3
(test))

TRC4
(test)

TRC5
(test)

TEC1
(test)

TEC2
(test)

TEC3
(test)

TEC4 
(test) 

TEC5 
(test) 

TRC1 
(train) 

1 0  0  0  0  1 0 0 0  0  
TRC2 
(train) 

0  1  0  0  0  0 1 0 0  0  
TRC3 
(train) 

0  0  1  0  0  0 0 1 0  0  
TRC4 
(train) 

0  0  0  1  0  0 0 0 0  0  
TRC5 
(train) 

0  0  0  0  1  0 0 0 0  1  
TEC1 
(train) 

1  0  0  0  0  1 0 0 0  0  
TEC2 
(train) 

0  1  0  0  0  0 1 0 0  0  
TEC3 
(train) 

0  0  1  0  0  0 0 1 0  0  
TEC4 
(train) 

0  0  0  0  0  0 0 0 1  0  
TEC5 
(train) 

0  0  0  0  1  0 0 0 0  1 
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ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.05 TRC1 
(train) 

0.9531 0.8367 0.8063 0.8012 0.7519 0.9265 0.8291 0.8038 0.7873 0.7519 

0.055 TRC2 
(train) 

0.9696 0.9531 0.8645 0.9367 0.8341 0.9696 0.9278 0.8645 0.9417 0.8544 

0.075 TRC3 
(train) 

0.9835 0.9341 0.9506 0.9746 0.9126 0.9810 0.9468 0.9354 0.9569 0.9189 

0.07 TRC4 
(train) 

0.9696 0.8898 0.8645 0.9531 0.8329 0.9696 0.8860 0.8683 0.9341 0.8367 

0.07 TRC5 
(train) 

1 0.9468 0.9354 0.9911 0.9519 1 0.9493 0.9392 0.9886 0.9227 

0.055 TEC1 
(train) 

0.9493 0.8506 0.8316 0.8683 0.7949 0.9531 0.8417 0.8316 0.8443 0.7987 

0.06 TEC2 
(train) 

0.9658 0.9215 0.8835 0.9506 0.8759 0.9645 0.9506 0.8810 0.9405 0.8835 

0.085 TEC3 
(train) 

0.9974 0.9455 0.9341 0.9924 0.9227 0.9962 0.9493 0.9531 0.9860 0.9291 

0.055 TEC4 
(train) 

0.967 0.8797 0.8746 0.9582 0.8240 0.9632 0.8810 0.8784 0.9531 0.8291 

0.075 TEC5 
(train) 

1 0.9569 0.9405 0.9949 0.9253 1 0.9594 0.9468 0.9949 0.9519 

Table 6: Classification rate ( ijR matrix) for sensor-1 (case-2) 
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ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.07 TRC1 
(train) 

0.9519 0.9544 0.8873 0.9227 0.9075 0.9430 0.9557 0.8898 0.9126 0.9088 

0.06 TRC2 
(train) 

0.8974 0.9519 0.8443 0.9050 0.8974 0.9000 0.9417 0.8519 0.8924 0.9012 

0.085 TRC3 
(train) 

0.9670 0.9519 0.9519 0.7557 0.9075 0.9683 0.9569 0.9468 0.7189 0.9025 

0.07 TRC4 
(train) 

0.9582 0.9873 0.8987 0.9544 0.9177 0.9607 0.9949 0.9088 0.9342 0.9113 

0.08 TRC5 
(train) 

0.9405 0.9594 0.9569 0.9177 0.9506 0.9468 0.9594 0.9544 0.8974 0.9506 

0.075 TEC1 
(train) 

0.9430 0.9594 0.8898 0.9265 0.9101 0.9506 0.9594 0.8924 0.9189 0.9012 

0.045 TEC2 
(train) 

0.8126 0.9227 0.8417 0.8113 0.8746 0.8253 0.9531 0.8329 0.8025 0.8772 

0.05 TEC3 
(train) 

0.9506 0.9354 0.9189 0.7708 0.8962 0.9443 0.9367 0.9506 0.7240 0.9000 

0.075 TEC4 
(train) 

0.9594 0.9936 0.9050 0.9468 0.9202 0.9620 0.9987 0.9063 0.9582 0.9202 

0.08 TEC5 
(train) 

0.9493 0.9594 0.9544 0.9215 0.9354 0.9506 0.9569 0.9594 0.9113 0.9531 

Table 7: Classification rate ( ijR matrix) for sensor-1 (case-2)  
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Table 8: Outcome of the classifier (case-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.07 TRC1 
(train) 

1 0 0 0 0 1 0 0 0 0 

0.06 TRC2 
(train) 

0 1 0 0 0 0 1 0 0 0 

0.085 TRC3 
(train) 

0 0 1 0 0 0 0 1 0 0 

0.07 TRC4 
(train) 

0 0 0 1 0 0 0 0 1 0 

0.08 TRC5 
(train) 

0 0 0 0 1 0 0 0 0 1 

0.075 TEC1 
(train) 

1 0 0 0 0 1 0 0 0 0 

0.045 TEC2 
(train) 

0 1 0 0 0 0 1 0 0 0 

0.05 TEC3 
(train) 

0 0 1 0 0 0 0 1 0 0 

0.075 TEC4 
(train) 

0 0 0 1 0 0 0 0 1 0 

0.08 TEC5 
(train) 

0 0 0 0 1 0 0 0 0 1 
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ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.055 TRC1 
(train) 

0.9544 0.6873 0.8683 0.6227 0.8101 0.7620 0.6278 0.8075 0.4949 0.7202 

0.16 TRC2 
(train) 

0.9594 0.9506 0.8468 0.7860 0.8202 0.9177 0.7683 0.8696 0.7911 0.8202 

0.105 TRC3 
(train) 

0.9164 0.7189 0.9506 0.6519 0.8278 0.8797 0.7012 0.8594 0.6443 0.8240 

0.08 TRC4 
(train) 

0.8468 0.8075 0.8632 0.9531 0.8215 0.9025 0.7025 0.8455 0.6734 0.8139 

0.09 TRC5 
(train) 

0.8797 0.6974 0.9050 0.6607 0.9557 0.8822 0.7025 0.9139 0.5962 0.9038 

0.06 TEC1 
(train) 

0.8012 0.6506 0.8506 0.5379 0.7569 0.9544 0.6924 0.8670 0.6468 0.8278 

0.155 TEC2 
(train) 

0.9126 0.7620 0.8670 0.7924 0.8189 0.9594 0.9531 0.8455 0.7860 0.8215 

0.115 TEC3 
(train) 

0.9038 0.7202 0.8835 0.6835 0.8379 0.9405 0.7303 0.9519 0.6658 0.8303 

0.075 TEC4 
(train) 

0.8822 0.6974 0.8405 0.6645 0.8025 0.8519 0.8063 0.8519 0.9544 0.8050 

0.085 TEC5 
(train) 

0.8278 0.6873 0.9025 0.5784 0.9038 0.8721 0.6797 0.8936 0.6177 0.9544 

Table 9: Classification rate ( ijR matrix) for sensor-1 (case-3)  
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ν =0.05 
σ  

TRC1 
(test) 

TRC2 
(test) 

TRC3 
(test)) 

TRC4 
(test) 

TRC5 
(test) 

TEC1 
(test) 

TEC2 
(test) 

TEC3 
(test) 

TEC4 
(test) 

TEC5 
(test) 

0.115 TRC1 
(train) 

0.9519 0.9291 0.8949 0.7936 0.9202 0.9240 0.9113 0.8949 0.8012 0.9240 

0.08 TRC2 
(train) 

0.6658 0.9506 0.6215 0.7151 0.6683 0.6379 0.8620 0.6924 0.6582 0.6063 

0.1 TRC3 
(train) 

0.8392 0.8645 0.9531 0.7164 0.8569 0.8341 0.8860 0.8392 0.6734 0.8506 

0.1 TRC4 
(train) 

0.8835 0.9126 0.8075 0.9544 0.8848 0.7987 0.9075 0.7949 0.7379 0.8557 

0.12 TRC5 
(train) 

0.8493 0.8873 0.8670 0.7367 0.9506 0.8873 0.8873 0.8746 0.7215 0.8911 

0.115 TEC1 
(train) 

0.9177 0.9063 0.8962 0.8139 0.9240 0.9531 0.9227 0.8949 0.7974 0.9202 

0.08 TEC2 
(train) 

0.6353 0.8594 0.6886 0.6557 0.6088 0.6594 0.9557 0.6139 0.7126 0.6645 

0.095 TEC3 
(train) 

0.8240 0.8746 0.8341 0.6582 0.8544 0.8519 0.8670 0.9506 0.7101 0.8493 

0.11 TEC4 
(train) 

0.8139 0.9088 0.7962 0.7582 0.8721 0.8987 0.9202 0.8215 0.9557 0.8848 

0.12 TEC5 
(train) 

0.8417 0.8873 0.8734 0.7265 0.8911 0.8683 0.8873 0.8645 0.7341 0.9531 

Table 10: Classification rate ( ijR matrix) for sensor-2 (case-3) 
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Table 11: Outcome of the classifier (case-3) 
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